If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+157x+222=0
a = 24; b = 157; c = +222;
Δ = b2-4ac
Δ = 1572-4·24·222
Δ = 3337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(157)-\sqrt{3337}}{2*24}=\frac{-157-\sqrt{3337}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(157)+\sqrt{3337}}{2*24}=\frac{-157+\sqrt{3337}}{48} $
| 29=p×20 | | h+(h+2)=20 | | 12+2x(18-14)^2=0 | | 3(x-0.5)=5.97 | | 6x^2-15x-75=0 | | -5x-6(-x+10)=-48 | | 35=5n+2n-8 | | (5x-20)=(2x+16) | | 2+9z+z^2=0 | | 8m-15+2=19 | | -2/3u=12 | | -6(u+3)=-48 | | -27=-0.6k | | 60+d=8d | | 2/36p=140 | | 6(x-4)=-66 | | 4+8x=6x-10 | | 11r60=16 | | 6x-5(6x-15)=-117 | | 6x-5(6x-15=-117 | | 7x+x=112 | | 3x+(3x+5)=124 | | 5(u+6)=8u+18 | | 4(u-6)=9u+21 | | 5+2v=-5 | | 12+-5+x=2x-2 | | 4(0.13x+√5)=√7X+1 | | 2-3w=-16 | | -27=20w=73 | | 3x+90=8x-10 | | 3+4u=-17 | | 0.50x+0.15(50)=42.5 |